Jony Chen jc5900@columbia.edu | 332 288 8839 | in | New York

EDUCATION

Columbia University	New York, USA
Master of Science in Mechanical Engineering with Concentration in Robotics and Control GPA: 3.96 / 4.00	Aug. 2022 - May 2024
 Relevant Coursework: Robot Learning, Applied Robotics, Intro to Robotics, Data Science, Artificial Intelligence, Applied Mac Control Theory, Evolutionary Computation and Design Automation, Mechatronics 	chine Learning, Intro to
The University of New South Wales (UNSW) (No.1 Engineering School in Australia) Bachelor of Engineering in Mechanical Engineering (Honors) Core Courses Average Grade: 85 / 100 (High Distinction)	Sydney, Australia <i>Feb. 2017 – May 2022</i>
 Relevant Coursework: Finite Element Analysis, Computational Fluid Dynamics, Engineering Design, Fracture and Fatigue, S Mechanics, Automobile Engine Technology, Thermodynamics, Fluid Mechanics, Composites 	tatistics,
SKILLS	
Python, PyTorch, ROS2, Robotics Simulation, Real-Time Control Systems, Machine Learning, Neural Networks, Reinforcement Learn Abaqus, Mechanical Design	ning, SQL, SolidWorks,
WORK EXPERIENCE	
Live Building Systems Data Science and Machine Learning Engineer	New York, USA Aug. 2024 – Present
Developed Python workflow for large dataset extraction, data cleaning, analysis, and visualization.	
Prepared training dataset of millions of water meter reading data points, including information leak prevention and time-based	feature engineering.
 Developed a machine learning model with 87% recall in water leak prediction, saving up to 244,596 gallons of water per build 	ling per year.
 Developed a CNN model for water meter image classification and achieved 80% accuracy. 	
Midea Mechanical Structure Engineer Intern	Foshan, China June 2021 – Aug. 2021
Designed air-cooling and conduction-cooling systems prototypes for a novel kitchen appliance in a department with a 45% ma	urket share in China.
Prototypes achieved a rapid temperature reduction of 1L of water from 95°C to 18°C within 25 minutes in the actual test.	
 Identified a critical issue with 3D-printed evaporators, and redesigned the component, saving 20% of the R&D budget. 	
PROJECTS	

1. Model Predictive Control (MPC) and Forward Dynamics Learning for a Robotic Arm	Apr. 2024
 Designed and implemented an MPC algorithm to optimize the robot arm's movements. 	
 Developed a neural network architecture to predict joint accelerations from current states and actions. 	
 Leveraged the MPC to obtain training data covering all desired goal positions. 	
 Integrated the trained model into the MPC framework, enabling optimized control based on learned dynamics. 	
2. Deep Q-Network Reinforcement Learning for Robotic Arm Control	Apr. 2024
 Designed and implemented a Q-network using PyTorch from scratch to learn optimal policies for robotic arm control. 	-
 Developed and executed the training loop using an epsilon-greedy policy, gradient clipping, and periodic target network updates. 	
 Evaluated the trained model's performance on 5 different goal positions, achieving an average reward of -2.99. 	
3. Behavioral Cloning for Autonomous Navigation Using Machine Learning and Neural Networks	Mar. 2024
 Developed vision-based robot navigation systems using traditional machine learning and CNNs in PyTorch. 	
Implemented PCA for dimensionality reduction and feature normalization to handle a large feature space and small sample size.	
 Conducted extensive testing to ensure the model's robustness and ability to generalize to new obstacle maps. 	
4. Deep Learning Model for the Forward Dynamics of a 3-link Robot Arm	Mar. 2024
Developed a DNN model to predict the forward dynamics of a 3-link robotic arm based on data generated from the ground truth model.	
 Collected and processed 250000 state-action pairs and resulting new states by simulating the ground truth model as training data. 	
 Validated the model through rigorous tests, achieving an average MSE of 1.87e-5. 	
5. Dynamics Engine Development for 2D Kinematic Chain	Dec. 2023
 Implemented a physics simulator for a 2D kinematic chain using Newton-Euler dynamics and Euler integration on Python. 	
 Calculated forces, torques, and accelerations for each link based on external inputs and internal constraints. 	
Achieved accurate simulation of 1-link, 2-link, and 3-link robotic arms, the simulated arm aligned with the ground truth in the visualization.	
6. Rapidly Exploring Random Tree (RRT)-Based Motion Planning for UR5 Robotic Arm	Nov. 2023
 Developed and implemented an RRT algorithm in Python for collision-free path planning for UR5 Robotic Arm. 	
Enhanced the RRT algorithm with path smoothing and resampling techniques to generate optimized and executable joint trajectories.	
 Archived a compute and path execution time of 35s in extreme scenarios, validating algorithm robustness. 	
7. Extended Kalman Filter (EKF) Implementation for Mobile Robot Localization	Nov. 2023
Designed and coded the EKF algorithm in Python to predict and update the robot's state based on sensor inputs and the motion model.	
 Utilized ROS 2 for real-time data processing and state estimation. 	
 Archived high localization accuracy in test scenarios, including environments with high sensor noise and close-range landmarks. 	
8. Cartesian Control and Numerical Inverse Kinematics for Robotic Arms	Oct. 2023
Developed real-time cartesian control on ROS 2 for 6 and 7-axis robotic arms, converting desired end-effector movements into joint velocitie	·s.

- Developed a numerical inverse kinematics function in Python to compute joint positions for target end-effector poses.
- Validated functionality by testing Cartesian control and inverse kinematics functions on Franka Panda and Universal UR5 and visualized on RVIZ2.